

3-hour lab

Total of
9 Hours
Class time

2-hour lab

3 x 1 hour lectures

1-hour Tutorial

Module Description

This module is intended to give the student a solid foundation in

programming theory. It covers the theory of programming

constructs and implements these in a lab-based environment for

the student to fully grasp the theory and understand the practice.

Introduction to Programming

7

• Understand the basic concepts of the key

programming structures

• Evaluate the most appropriate constructs to

use and to implement these constructs in

solving a variety of problems

Learning Outcomes (Abbreviated)
On completion of this module the learner will/should be able to:

8

• Understand a specification, prepare suitable

data to test the specification

• Demonstrate competency in the fundamentals

of developing software

• Work individually and as a member of a team

Learning Outcomes (Abbreviated)
On completion of this module the learner will/should be able to:

15%

Module Assessment

Monday, Nov 11th – 2.5 hours, open book1

Practical (Lab) Exams

15%Monday, Dec 16th – 2.5 hours, open book2

15%Monday, Feb 24th – 2.5 hours, open book3

15%Monday, April 28th – 2.5 hours, open book4

7.5%Thursday, Nov 14th – 1 hour, closed book1

Multiple Choice Quizzes

7.5%Thursday, Dec 12th – 1 hour, closed book2

7.5%Thursday, February 27th – 1 hour, closed book3

7.5%Friday, Apr 30th – 1 hour, closed book4

70%Lab Exams Total: 30%MCQ Total:

10%Every Thursday, semester 2 (10 X 1%)5

Module
Content
Software design is a
process to transform user
requirements into some
suitable form, which helps
the programmer in
software coding and
implementation.

Program development is
the process of conceiving,
specifying, designing,
programming, documenting,
testing, and bug fixing involved
in creating and
maintaining software.

What is
Programming?

A program is a sequence of instructions that specifies how to

perform a computation on computer hardware. The computation

might be something mathematical, like solving a system of

equations or finding the roots of a polynomial.

What is
Programming?

A few basic instructions appear in just about every language:
input: Get data from the keyboard, a file, a sensor, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and division.

decision: Check for certain conditions and execute the appropriate code.

repetition: Perform an action repeatedly, usually with some variation.

A brief history of
Computer Programming

1995: Java
Java was developed by James

Gosling and other developers at Sun

Microsystems and was first

introduced to the public in 1995.

It is a general-purpose

programming language.

Platform Independent
It is one of the biggest merits of java -
Java is platform independent and can run
on any platform such as Windows, Mac,
Linux, etc. (WORA)

Secure
Java is considered to be a relatively secure
language

Simple
Java is easier to learn compared to
languages such as C or C++.

Why Java?

Object Oriented
Java is an object-oriented programming
language and lends itself well to
creating reusable code.

Robust
There are many features like automatic
garbage collection, type checking and
exception handling that makes java a
robust (strong) language.

Think Java is a hands-on introduction to computer science and
programming used by many universities and high schools
around the world. Its conciseness, emphasis on vocabulary,
and informal tone make it particularly appealing for readers
with little or no experience. The book starts with the most
basic programming concepts and gradually works its way to
advanced object-oriented techniques.

In this fully updated and expanded edition, authors Allen
Downey and Chris Mayfield introduce programming as a
means for solving interesting problems.

Discover one concept at a time: tackle complex topics in a
series of small steps with multiple examples Understand how
to formulate problems, think creatively about solutions, and
develop, test, and debug programs.

Learn about input and output, decisions and loops, classes
and methods, strings and arrays, recursion and polymorphism
Determine which program development methods work best
for you and practice the important skill of debugging.

Free Copy available from:
https://greenteapress.com/wp/think-java-2e/

https://greenteapress.com/wp/think-java-2e/

Ready to get started ?

Java Programs

1
2
3
4
5
6

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
System.out.println(“..and goodbye!”);

}
}

Compile
& Run

Hello World!
…and goodbye!

Tools to
get started

What tools do you need for
creating Java programs?

Tools to
get started

• A Development Environment
• A Compiler
• Java Virtual Machine

 A Development Environment
• A Compiler
• Java Virtual Machine

A development environment (or Integrated
Development Environment - IDE) helps you
manage your code and provides convenient
ways for you to write, compile, and run your
code.

You don’t actually need an integrated
development environment:
All you need is software that lets you create
simple text files, like notepad, or textpad.

• A Development Environment
 A Compiler
• Java Virtual Machine

A compiler takes the Java code (the
simple text file) that you write and
turns that code into a series of
instructions called bytecode.

Humans can’t readily compose or
decipher bytecode instructions. But
certain software that you run on your
computer can interpret and carry out
bytecode instructions.

• A Development Environment
• A Compiler
 Java Virtual Machine

You need a Java Virtual Machine
(JVM).

A Java Virtual Machine is a piece of
software. A Java Virtual Machine
interprets and carries out bytecode
instructions.

Java Development Kit (JDK) Editions

 Java Standard Edition (J2SE)
◦ J2SE can be used to develop client-side standalone

applications or applets.

 Java Enterprise Edition (J2EE)
◦ J2EE can be used to develop server-side applications such

as Java servlets, Java ServerPages, and Java ServerFaces.

 Java Micro Edition (J2ME).
◦ J2ME can be used to develop applications for mobile

devices such as cell phones.

When you write a Java
program, you write java code

– a plain text file.

The compiler translates your
source code instructions into
Java byte-code instructions.

After writing the code, you
run a program (that is, you

apply a tool) to your source
code. The program is a

compiler. Java Compiler

When you write a Java
program, you write java code

– a plain text file.

The compiler translates your
source code instructions into
Java byte-code instructions.

After writing the code, you
run a program (that is, you

apply a tool) to your source
code. The program is a

compiler. Java Compiler

When you write a Java
program, you write java code

– a plain text file.

The compiler translates your
source code instructions into
Java byte-code instructions.

After writing the code, you
run a program (that is, you

apply a tool) to your source
code. The program is a

compiler. Java Compiler

Java
Code

The code that a programmer creates is known as

source code. The file that contains this must end

in “.java”, eg:

Hello.java

Compiled
Byte-Code

A class file is created as a result of successful compilation
by the Java compiler from the ". java" file, eg:

Hello.class

Java
Byte-Code

Hello.class

With Java, you can take a
bytecode file that you
created with a Windows
computer, copy the
bytecode to, say, a
Macintosh computer, and
then run the byte-code
with no trouble at all.

Byte-Code
Portability!

A Simple Java Program

1
2
3
4
5

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

}

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

1
2
3
4
5 }

Hello.java

A Simple Java Program

1
2
3
4
5

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

}

Hello.java

A Simple Java Program

1
2
3
4
5

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

}

Hello.java

A Simple Java Program

1
2
3
4
5

public class Hello {
public static void main(String[] args) {

System.out.println(“Hello World!”);
}

}

Hello.java

Compile
& Run

Hello World!

Java Programs – Shell Code
1
2
3
4
5
8
9
10
11

public class YourClassNameHere {
public static void main(String[] args)
{

}
}

Java
Fundamentals

Variables
A variable is a named storage
location in the computer ’s memory.
A literal is a value written into the
code of a program.

Java Programs
public class JavaVariable
{

public static void main(String[] args)
{

int myFirstNumber = 5;

System.out.println(myFirstNumber);
}

1
2
3
4
5
8
9
10
11 }

Compile
& Run

H
5

Java
Fundamentals

Data Types
Data Types are the types of data
that can be stored in a variable.

Java Primitive Data Types (Complete)
Data Type Size Range

byte 1 byte Integers (-128 to +127)

short 2 bytes Integers (-32,768 to +32,767)

int 4 bytes Integers (-2,147,483,648 to +2,147,483,647)

long 8 bytes Integers (-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807)

float 4 bytes Floating-point numbers (±3.4E-38 to ±3.4E38,
7 digits of accuracy)

double 8 bytes Floating-point numbers (±1.7E-308 to ±1.7E308,
15 digits of accuracy)

char 2 bytes Stores a single character/letter or ASCII values
boolean 1 bit Stores either true or false

Primitive Data Types

There are many different types of data.
Variables are classified according to their
data type. The data type determines the
kind of data that may be stored in them.

The data type also determines the
amount of memory the variable uses,
and the way the variable formats and
stores data.

Primitive Data Types - Declaration

byte apples;
short minutes;
int temp;
long days;

kms = 120;
minutes = 100;
temperatureGalway = -15;
days = 182500L;

apples = 20;
minutes = 200;
temp = -3;
days = 182500L;

The Integer Data Types

When you declare a long data type, the value must have a
suffix of the letter L.
Example: 120L would be treated as a long.

long myCounter;

myCounter = 120;

Java will assume
an int type

long myCounter;

myCounter = 120L;

Forced to be of
type long

Primitive Data Types - Declaration

double myDouble;
float myFloat;

myDouble = 123456.789456;
myFloat = 200.123f;

The Floating-Point Data Types

The floating-point data types include float and double.
When you write a floating-point literal in your program code, Java assumes it
to be of the double data type. You can force a floating-point literal to be
treated as a float by suffixing it with the letter F. Example: 14.0F would be
treated as a float.

float pay;
pay = 1800.99;

This statement will give an
error message (1800.99 seen as
a double)

float pay;
pay = 1800.99F;

Forced to be of type float

Primitive Data Types - Declaration

char myChar;
boolean myBool;

myChar = ‘a’;
myBool = true;

String Data Type - Declaration

String myText;

myText = “Hello World!”;

Java
Fundamentals

Strings
A string is a sequence of characters and
is a data type used to represent text
rather than numbers. It is comprised of
a set of characters that can also contain
spaces and numbers.

Strings in Java - Declaration

String myText;
myText = “Hello World!”;

9 different data types:

4 x integers (byte, short, int and long)
2 x floating point (float and double)

char
String

boolean

Java
Fundamentals

Operators
Operators are used to perform
operations on variables and values.

Arithmetic Operators

Java offers a multitude of operators for
manipulating data.

Most of its operators can be divided into
the following four groups:

arithmetic, bitwise, relational, and logical.

Arithmetic Operators

Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Arithmetic Operators
Addition (+)

The addition operator returns the sum of its two
operands.

answer = 2 + 8; // assigns 10 to variable answer

pay = salary + bonus; // assigns the value of salary + bonus to variable pay

number = number + 3; // assigns number + 3 to variable number

Arithmetic Operators
Subtraction (-)

The subtraction operator returns the value of its
right operand subtracted from its left operand.

answer = 5 - 4; // assigns 1 to variable answer

pay = salary - tax; // assigns the value of salary - tax to variable pay

number = number - 1; // assigns number - 1 to variable number

Arithmetic Operators
Multiplication (*)

The multiplication operator returns the
product of its two operands.

answer = 5 * 4; // assigns 20 to variable answer

pay = hours * rate // assigns the value of (hours * rate) to variable pay

students = students * 2; // assigns (students * 2) to variable students

Arithmetic Operators
Division (/)

The division operator returns the quotient of its left operand
divided by its right operand.

answer = 20 / 4; // assigns 5 to variable answer

average = marks / number; // assigns the value of (marks / number) to
//average variable

half = number / 2; // assigns (number / 2) to variable half

Integer division

double parts;

parts = 22 / 4; // will assign the value of 5.0

When both operands of a division statement are integers,
the statement will result in integer division. This means
that the result of the division will be an integer as well. If
there is a remainder, it will be discarded.

In order for a division operation to return a floating-point
value, one of the operands must be of a floating-point data
type. double parts;

parts = 22.0 / 4; // will assign the value of 5.5

Arithmetic Operators
Modulus (%)

The modulus operator returns the remainder
of a division operation involving two integers.

leftOver = 22 / 4; // assigns 2 to variable leftOver

Operator Precedence

Operator precedence refers to the rules for the order in which parts of a
mathematical expression are evaluated.

The multiplication, division, and remainder operators have the same precedence,
and it is higher than the precedence of the addition and subtraction operators.

Java has well-defined rules for specifying the order in which the operators in an
expression are evaluated when the expression has several operators.

Precedence rules can be overridden
by explicit parentheses.

https://introcs.cs.princeton.edu/java/11precedence/

https://introcs.cs.princeton.edu/java/11precedence/

Operator Precedence

3 + 6 / 2 = ?

3 + 6 / 2 = 4.5
or

3 + 6 / 2 = 6

Explicit Parenthesis example

(3 + 6) / 2

10 / (5+6)

15 * ((6+5)-7)

Java
Fundamentals

Concatenation
Concatenation is the operation of
joining character strings end-to-end.
For example, the concatenation of
"snow" and "ball" is "snowball".

Displaying Multiple Items with the + Operator

When the + operator is used with strings ,we call it a string
concatenation operator. To concatenate means to append. The
string concatenation operator appends one string to another.

System.out.println(“Hello “ + “World!”);

The + operator produces a string that is a combination of
the 2 strings both sides of the operator.

Compile
& Run

Hello World!

Displaying Multiple Items with the + Operator

We can also use the + operator to concatenate the
contents of a variable to a string.

myVar = 365;
System.out.println(“Number of days in the year: ” + myVar);

The + operator is used to concatenate the contents of the number
variable with the string “Number of days in the year: “. The +
operator converts the myVar variable’s value from an integer to a
string and then appends the new value.

Compile
& Run

Number of days in the year: 365

Java
Fundamentals

Keeping your code tidy
Use comments and indentation to
improve readability

Use descriptive names for Classes and
Variables

Comments

Comments are notes of
explanation that document lines or
sections of a program. Comments are
part of the program, but the compiler
ignores them. They are intended for
people who may be reading the
source code.

Comments
Three ways to comment in Java

Single-Line comments (//)

Multi-line comments (/*….. */)

Documentation comments (/**….. */)

Comments
Single-Line comment

You simply place two forward slashes (//) where you
want the comment to begin. The compiler ignores
everything from that point to the end of the line.

1 // This is a single-line comment
2
3 public class …
4 {
5 ….
6 }

Comments
Multi-Line comment

Multi-Line comments start with a forward slash
followed by an asterisk (/*) and end with an
asterisk followed by a forward slash (*/).
Everything between these markers is ignored.

This is a
Multi-Line comment

1 /*
2
3
4 */
5 public class …
6 {
7 …
8 }

Comments
Documentation Comments

Documentation comments starts with /** and
ends with */. Normally you write a
documentation comment just before class
and method headers, giving a brief
description of the class or method.

These comments can be read and processed
by a program named javadoc, which comes
with the Sun JDK. The purpose of the
javadoc program is to read Java source code
files and generate attractively formatted
HTML files that document the source code.

Comments
Documentation Comments

This class creates a program that calculates
company payroll

1 /**
2
3
4 */
5 public class Comment
6 {
7 /**
8 The main method is the program’s starting point
9 */
10 public static void main(String[] args)
11 {
12 …
13 }
14 }

Indentation
Indentation is a fundamental aspect of code styling and plays a large
role in influencing readability. Indented code is easier to read through
than un-indented code.

Proper code indentation will ensure your code is:

Easier to read
Easier to understand
Easier to modify
Easier to maintain
Easier to enhance

Identifiers

Variable names and class names are examples of identifiers
(represents some element of a program)

You should always choose names for your variables that give
an indication of what they are used for:

int y;

This gives us no clue as to what the purpose of the variable is.

int numberOfBikes;

numberOfBikes gives anyone reading the program an idea of
what the variable is used for.

int numberofbikes;

Identifiers
The following rules must be followed with all identifiers:

• The first character must be one of the letters a-z,
A-Z, underscore ”_”, or the dollar sign “$”

• After the first character, you may use the letters
a-z, A-Z, underscore ”_”, the dollar sign “$”, and
the digits 0-9

• No spaces

• Uppercase and lowercase characters are distinct.
This means that numberOfBikes is not the same
as numberofbikes.

Variable and Class names

Start variable
names with a
lowercase letter

Start class names with
an uppercase letter

Each subsequent
word’s first letter
must be capitalised

Each subsequent
word’s first
letter must be
capitalised

Example: Example:

numberOfBikes CityCars

Variable Class

Java
Fundamentals

Reading Keyboard Input
using Scanner

Reading Keyboard Input
The Scanner class

Objects of the Scanner class can be used to read input from the keyboard.

The Java API has an object System.in which refers to the
standard input device (normally the keyboard). The System.in
object reads input only as byte values which isn’t very useful.

To work around this, we use the System.in object in
conjunction with an object of the Scanner class.

The Scanner class is designed to read input from a source
(System.in) and provides methods that you can use to
retrieve the input formatted as primitive values or strings.

Reading Keyboard Input
Scanner class : import statement

The Scanner class is not automatically available to your
Java programs. Any program that uses the Scanner
class should have the following statement near the

beginning of the file, before any class definition:

import java.util.Scanner;

This statement tells the Java compiler where in the Java
library to find the Scanner class, and makes it available

to your program.

Reading Keyboard Input
The Scanner class

First, you create a Scanner object and connect it to the System.in object:

Scanner keyboard

Reading Keyboard Input
The Scanner class

First, you create a Scanner object and connect it to the System.in object:

Scanner keyboard = new Scanner(System.in);

Declares a variable named keyboard.
The data type of the variable is Scanner.

Reading Keyboard Input
Scanner class methods

The Scanner class has methods
for reading strings, bytes,

integers, long integers, short
integers, floats and doubles.

Reading Keyboard Input
Scanner class methods : nextInt

Returns input as an int

1 int number;
2 Scanner keyboard = new Scanner(System.in);
3 System.out.println(“Enter a integer value: “);
4 number = keyboard.nextInt();

The nextInt method formats the input that was entered at
the keyboard as an int, and then returns it.

Reading Keyboard Input
Scanner class methods : nextDouble

Returns input as a double

1 double number;
2 Scanner keyboard = new Scanner(System.in);
3 System.out.println(“Enter a double value: “);
4 number = keyboard.nextDouble();

The nextDouble method formats the input that was entered
at the keyboard as a double, and then returns it.

Reading Keyboard Input
Scanner class methods : nextByte

Returns input as a byte

1 byte x;
2 Scanner keyboard = new Scanner(System.in);
3 System.out.println(“Enter a byte value: “);
4 x = keyboard.nextByte();

The nextByte method formats the input that was entered at
the keyboard as a byte, and then returns it.

Reading Keyboard Input
Scanner class methods : nextFloat

Returns input as a float

1 float number;
2 Scanner keyboard = new Scanner(System.in);
3 System.out.println(“Enter a float value: “);
4 number = keyboard.nextFloat();

The nextFloat method formats the input that was entered at
the keyboard as a float, and then returns it.

Reading Keyboard Input
Scanner class methods : nextLong

Returns input as a long

1 long number;
2 Scanner keyboard = new Scanner(System.in);
3 System.out.println(“Enter a long value: “);
4 number = keyboard.nextLong();

The nextLong method formats the input that was entered at
the keyboard as a long, and then returns it.

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class
2
3 public class InputProblem
4 {
5 public static void main(String[] args)
6 {
7
8 int age;
9
10
11 Scanner keyboard = new Scanner(System.in);
12
13 System.out.print(“What is your age?“);
14 age = keyboard.nextInt();
15
16 System.out.println(“Your age is “ + age);
18 }
19 }

Variable declarations

Create Scanner object to read input

Get user’s age

Your age is 25
Press any key to continue . . .

What is your age? 25

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class
2
3 public class InputProblem
4 {
5 public static void main(String[] args)
6 {
7
8 int age;
9 int yearOfBirth;
10
11 Scanner keyboard = new Scanner(System.in);
12
13 System.out.print(“What is your age?“);
14 age = keyboard.nextInt();
15 System.out.print(“What is your year of birth?“);
16 yearOfBirth = keyboard.nextInt();
17
18 System.out.println(“You’re “ + age + “, you were born in ” + yearOfBirth)
19 }
20 }

Variable declarations

Create Scanner object to read input

Get user’s age

You’re 25, you were born in 1995
Press any key to continue . . .

What is your age? 25

Get user’s
year of birth

What is your year of birth? 1995

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class
2
3 public class InputProblem
4 {
5 public static void main(String[] args)
6 {
7 String name;
8 int age;
9 double income;
10
11 Scanner keyboard = new Scanner(System.in);
12
13 System.out.print(“What is your age? “);
14 age = keyboard.nextInt();
15
16 System.out.print(“What is your annual income? “);
17 income = keyboard.nextDouble();
18
19 System.out.print(“What is your name? “);
20 name = keyboard.nextLine();
21
22 System.out.println(“Hello “ + name + “. Your age is “ +
23 age + “ and your income is R” + income);
24 }
25 }

What is your age? 25 [enter]

Printed on the computer screen when application runs:

What is your annual income? 80000 [enter]

What is your name? Hello . Your age is 25 and your income is R80000.00

The program does not give
the user time to enter

his/her name

Problem!!

Reading Keyboard Input

When the user types keystrokes at the keyboard,
those keystrokes are stored in an area of memory

called the keyboard buffer.

Pressing the “Enter” key causes a new-line
character to be stored in the keyboard buffer.

Reading Keyboard Input

13 System.out.print(“What is your age? “);
14 age = keyboard.nextInt();
15
16 System.out.print(“What is your annual income? “);
17 income = keyboard.nextDouble();
18
19 System.out.print(“What is your name? “);
20 name = keyboard.nextLine();

keyboard buffer

The user was asked to enter his/her age.

The statement in line 14 called the nextInt() method to
read an integer from the keyboard buffer.

The user typed 25 and then pressed the “Enter” key

The nextInt() method read the value 25 from the
keyboard buffer, and then stopped when it encountered
the newline character. The newline character was not

read and remained in the keyboard buffer.

/n

nextInt() method

age =

25

Stops when it sees the new-line character

Reading Keyboard Input

16 System.out.print(“What is your annual income? “);
17 income = keyboard.nextDouble();
18
19 System.out.print(“What is your name? “);
20 name = keyboard.nextLine();

keyboard buffer

Next the user was asked to enter his/her annual income

The user typed 80000 and pressed the “Enter” key

When the nextDouble() method in line 17 executed, it
first encountered the new-line character that was left
behind. This does not cause a problem because the

nextDouble() method is designed to skip any leading
newline characters it encounters. It skips the newline
character, reads the value 80000.00 and stops reading

when it encounters the newline character which is then
left in the keyboard buffer.

/n

/n

nextDouble() method

income =

Stops when it sees the newline character

Skips newline character

80000

Reading Keyboard Input

19 System.out.print(“What is your name? “);
20 name = keyboard.nextLine();

keyboard buffer

Next the user was asked to enter his/her name

In line 20 the nextLine() method is called.

/n

The nextLine() method, however, is not designed to skip
over an initial newline character. If a newline character is
the first character that nextLine() method encounters,
then nothing will be read. It will immediately terminate
and the user will not be given a chance to enter his or

her name.

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class
2
3 public class InputProblem
4 {
5 public static void main(String[] args)
6 {
7 String name;
8 int age;
9 double income;
10
11 Scanner keyboard = new Scanner(System.in);
12
13 System.out.print(“What is your age? “);
14 age = keyboard.nextInt();
15
16 System.out.print(“What is your annual income? “);
17 income = keyboard.nextDouble();
18 keyboard.nextLine();
19 System.out.print(“What is your name? “);
20 name = keyboard.nextLine();
21
22 System.out.println(“Hello “ + name + “. Your age is “ +
23 age + “ and your income is R” + income);
24 }
25 }

The purpose of this call is to consume, or
remove, the newline character that remains in
the keyboard buffer. We do not need to keep
the method’s return value so we do not assign

the method’s return value to any variable

Java
Fundamentals

Decision Structures

The if Statement

The if statement decides whether a section of
code executes or not.

The if statement uses a boolean value to
decide whether the next statement or block of
statements executes.

if (boolean expression is true)
execute next statement.

Flowcharts

 If statements can be modeled as a flow chart.

Wear a coat.

YesIs it cold
outside?

if (coldOutside)
wearCoat();

Flowcharts

 A block if statement may be modeled as:

Wear a coat.

YesIs it cold
outside?

Wear a hat.

Wear gloves.

if (coldOutside)
{

wearCoat();
wearHat();
wearGloves();

}

Note the use of curly
braces to block several
statements together.

Relational Operators

 In most cases, the boolean expression, used by the
if statement, uses relational operators.

Relational Operator Meaning

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

== is equal to

!= is not equal to

Boolean Expressions

 A boolean expression is any variable or calculation that
results in a true or false condition.

Expression Meaning

x > y Is x greater than y?

x < y Is x less than y?

x >= y Is x greater than or equal to y?

x <= y Is x less than or equal to y.

x == y Is x equal to y?

x != y Is x not equal to y?

Programming Style and if Statements

 An if statement can span more than one line;
however, it is still one statement.

if (average > 95)
grade = ′A′;

is functionally equivalent to

if(average > 95) grade = ′A′;

Programming Style and if Statements

 Rules of thumb:
◦ The conditionally executed statement should be on the line

after the if condition.
◦ The conditionally executed statement should be indented

one level from the if condition.
◦ If an if statement does not have the block curly braces, it is

ended by the first semicolon encountered after the if
condition.
if (expression)

statement;
No semicolon here.
Semicolon ends statement here.

Block if Statements
 Conditionally executed statements can be grouped into a

block by using curly braces {} to enclose them.
 If curly braces are used to group conditionally executed

statements, the if statement is ended by the closing
curly brace.

if (expression)
{
statement1;
statement2;

} Curly brace ends the statement.

Comparing Characters
 Characters can be tested with relational operators.
 Characters are stored in memory using the Unicode character

format.
 Unicode is stored as a sixteen (16) bit number.
 Characters are ordinal, meaning they have an order in the

Unicode character set.
 Since characters are ordinal, they can be compared to each

other.

char c = ′A′;
if(c < ′Z′)
System.out.println("A is less than Z");

Flags
 A flag is a boolean variable that monitors some

condition in a program.
 When a condition is true, the flag is set to true.
 The flag can be tested to see if the condition has

changed.
if (average > 95)
highScore = true;

 Later, this condition can be tested:
if (highScore)
System.out.println("That′s a high score!");

Comparing Characters
 Characters can be tested with relational operators.
 Characters are stored in memory using the Unicode character format.
 Unicode is stored as a sixteen (16) bit number.
 Characters are ordinal, meaning they have an order in the Unicode character

set.
 Since characters are ordinal, they can be compared to each other.

char c = ′A′;
if(c < ′Z′)
System.out.println("A is less than Z");

if Statements
if (coldOutside == true){

System.out.println(“Wear Jacket”);
}

if-else Statements

 The if-else statement adds the ability to conditionally
execute code when the if condition is false.

if (expression)
statementOrBlockIfTrue;

else

statementOrBlockIfFalse;

if-else Statement Flowcharts

Wear a coat.

YesIs it cold
outside?

Wear shorts.

No

if else Statements
if (coldOutside == true){

System.out.println(“Wear Jacket”);
}else{

System.out.println(“Wear shorts”);
}

Nested if Statements

 When an if statement appears inside another if
statement (single or block) it is called a nested if
statement.

 The nested if is executed only if the outer if
statement results in a true condition.

Nested if Statement Flowcharts

Wear a jacket.

YesIs it cold
outside?

Wear shorts.
Is it

snowing?

Wear a parka.

No

No Yes

Nested if Statements
if (coldOutside == true){

if (snowing == true){
System.out.println(“Wear Parka”);

}else {
System.out.println(“Wear Jacket”);

}
}else{

System.out.println(“Wear shorts”);
}

Alignment and Nested if Statements

if (coldOutside)
{

if (snowing)
{

wearParka();
}
else
{

wearJacket();
}

}
else
{

wearShorts();
}

This if and
else

go together.
This if and

else
go together.

if-else-if Statements

Nested if statements can become
very complex.

The if-else-if statement makes
certain types of nested decision logic
simpler to write.

if-else Matching

 Curly brace use is not required if there is only one
statement to be conditionally executed.

However, curly braces make the
program more readable.

 Additionally, proper indentation makes it much
easier to match up else statements with their
corresponding if statement.

if-else-if Statements
if (expression_1)
{

statement;
statement;
etc.

}
else if (expression_2)
{

statement;
statement;
etc.

}

Insert as many else if clauses as necessary

else
{

statement;
statement;
etc.

}

If expression_1 is true these statements are
executed, and the rest of the structure is ignored.

Otherwise, if expression_2 is true these statements are
executed, and the rest of the structure is ignored.

These statements are executed if none of
the expressions above are true.

Logical Operators

 Java provides two binary logical operators
(&& and ||) that are used to combine
boolean expressions.

 Java also provides one unary (!) logical
operator to reverse the truth of a
boolean expression.

Logical Operators

Operator Meaning Effect

&& AND
Connects two boolean expressions into one. Both
expressions must be true for the overall expression to
be true.

|| OR

Connects two boolean expressions into one. One or
both expressions must be true for the overall
expression to be true. It is only necessary for one to be
true, and it does not matter which one.

! NOT

The ! operator reverses the truth of a boolean
expression. If it is applied to an expression that is true,
the operator returns false. If it is applied to an
expression that is false, the operator returns true.

The && Operator
 The logical AND operator (&&) takes two operands that must both be boolean

expressions.
 The resulting combined expression is true if (and only if) both operands are true.

Expression 1 Expression 2 Expression1 && Expression2
true false false
false true false
false false false
true true true

The || Operator

 The logical OR operator (||) takes two operands that must both be
boolean expressions.

 The resulting combined expression is false if (and only if) both operands
are false.

Expression 1 Expression 2 Expression1 || Expression2
true false true
false true true
false false false
true true true

The || Operator
if(salary >=30000 || yearsOnJob >= 2)
{

System.out.println(“You qualify for the loan!”);
}

else
{

System.out.println(“You do not qualify for the loan”);
}

 The ! operator performs a logical NOT operation.
 If an expression is true, !expression will be false.

if (!(temperature > 100))
System.out.println("Below the maximum temperature.");

 If temperature > 100 evaluates to false, then the output
statement will be run.

The ! Operator

Expression 1 !Expression1

true false

false true

Order of Precedence
 The ! operator has a higher order of precedence than the
&& and || operators.

 The && and || operators have a lower precedence than
relational operators like < and >.

 Parenthesis can be used to force the precedence to be
changed.

Checking numeric ranges

if (x >= 20 && x <=40)
System.out.println(x + “ is in the range”);

 When determining whether a number is inside a
range, it’s best to use the && operator.

Range 20 to 40

Checking numeric ranges

if (x < 20 || x > 40)
System.out.println(x + “ is outside the range”);

 When determining whether a number is
outside a range, it’s best to use the || operator.

Outside range 20 to 40

Comparing String Objects
 In most cases, you cannot use the relational

operators to compare two String objects.
 Reference variables contain the address of

the object they represent.
 Unless the references point to the same

object, the relational operators will not
return true.

String name1 = “Thandi”; String name2 = “Joseph”;

if (name1 == name2) This statement will be false

Comparing String Objects

 In most cases, you cannot use the relational
operators to compare two String objects.

 Reference variables contain the address of the
object they represent.

 Unless the references point to the same object,
the relational operators will not return true.

String name1 = “Thandi”; String name2 = “Thandi”;

if (name1 == name2) This statement will be false as well

Comparing String Objects
String name1 = “Thandi”; String name2 = “Thandi”;

if (name1 == name2) This statement will be false as well

name1 String

String object

“Thandi”

Variable name1

Memory
address of

String
object

name2 String

Another String object

“Thandi”

Variable name2

Memory
address of

String
object

Because name1 and name2 does not point to
the same object, they are not the same
according to the relational operators

Comparing String Objects
The equals method

String name1 = “Thandi”; String name2 = “Thandi”;

if (name1.equals(name2)) This statement will be true

if (name1.equals(“Thandi”)) This statement will be true

if (!name1.equals(“Thandi”)) This statement will be false

Ignoring Case in String Comparisons

 In the String class the
equals methods is case sensitive.

 In order to compare two String
objects that might have different case, use:
◦ equalsIgnoreCase

if (name1.equalsIgnoreCase(name2)){

System.out.print(“The names are the same”);
}

The String Class
String Methods

Because the String type is a class
instead of a primitive data type, it
provides numerous methods for

working with strings.

The String Class
charAt() Method

This method returns the character at the specified
position.

char letter;
String name = “Arnold”;
letter = name.charAt(2);

0 1 2 3 4 5

A r n o l d

After this code executes, the variable letter will hold the
character ‘n’.

The String Class
length() Method

This method returns the number of characters in a
string.

int stringSize;
String name = “Arnold”;
stringSize = name.length();

0 1 2 3 4 5

A r n o l d

After this code executes, the variable stringSize will hold
the value 6.

The String Class
toLowerCase() Method

This method returns a new string that is the lowercase equivalent of
the string contained in the calling object.

String bigName = “ARNOLD”;
String littleName = bigName.toLowerCase();

After this code executes, the variable littleName will hold the string
“arnold”.

The String Class
toUpperCase() Method

This method returns a new string that is the
uppercase equivalent of the string contained in

the calling object.

String littleName = “arnold”;
String bigName = littleName.toUpperCase();

After this code executes, the variable bigName
will hold the string “ARNOLD”.

Pseudocode

Pseudocode

Pseudocode is a detailed
description of what a
computer program must
do, expressed in an English
like language rather than in
a programming language.

Pseudocode Convention

 Statement are written in simple English
 Each instruction is written on a separate line
 Keywords and indentation are used to signify particular

control structures.
 Each set of instructions is written from top to bottom,

with only one entry and one exit.
 Groups of statements may be formed into modules, and

that group given a name.

Levels of Program Development

1. Define the problem. Human thought
2. Plan the problem solution. writing the

algorithm [pseudo-natural language
(English)

3. Code the program.  High Level
Programming Language (Java)

4. Compile the program. Machine Code
5. Run the program.
6. Test and debug the program.

Pseudocode Example

Write a Program to Print the Sum of two integer
Numbers

 Start the program
 Read the first number and save in the variable (N1)
 Read the second number and save in the variable (N2)
 Save the sum of both numbers in the variable Sum

Sum = N1 + N2
 Print the variable (Sum)
 End the program

Pseudocode Example

Pseudocode:
Start the program

Create a variable to hold a counter from 2 to 30.

 Initialize the counter to 2.

Create a variable to hold the sum.

 Initialize the sum to zero.

Loop While the counter is less-than-or-equal to 30

add the counter to the sum

add two to the counter.

 repeat until the counter reach 30

Print the sum.

End of program

When planning for a problem solution,
algorithms are used to outline the
solution steps usingEnglish like
statements, called pseudocode.
or

A flowchart , which is a graphical
representation of an algorithm.

Java
Fundamentals

The Switch Statement

The switch Statement

 The if-else statement allows you
to make true / false branches.

 The switch statement allows you to
use a value to determine how a
program will branch.

 The switch statement can evaluate
a variable and make decisions based
on the value.

The switch Statement

 The switch statement takes the form:
switch (SwitchExpression)
{

case CaseExpression:
// place one or more statements here
break;

case CaseExpression:
// place one or more statements here
break;

// case statements may be repeated
//as many times as necessary

default:
// place one or more statements here

}

3

The switch Statement
 The switch statement takes a value (byte, short, int, long,
char, string) as the SwitchExpression.

switch (SwitchExpression)
{

…
}

 The switch statement will evaluate the expression.
 If there is an associated case statement that matches that value,

program execution will be transferred to that case statement.

The switch Statement

 Each case statement will have a corresponding
CaseExpression that must be unique.

case CaseExpression:

// place one or more statements here

break;

 If the SwitchExpression matches the CaseExpression, the
Java statements between the colon and the break
statement will be executed.

The case Statement

 The break statement ends the case
statement.

 The break statement is optional.
 Without the break statements, the

program would execute all of the lines
from the matching case statement to the
end of the block.

 The default section is optional and will
be executed if no CaseExpression matches
the SwitchExpression.

The case Statement
public static void main(String[] args)
{

int number;

Scanner keyboard = new Scanner(System.in);

System.out.print(“Enter 1, 2 or 3: “);
number = keyboard.nextInt();

switch (number)
{

case 1:
System.out.println(“You entered 1.”);
break;

case 2:
System.out.println(“You entered 2.”);
break;

case 3:
System.out.println(“You entered 3.”);
break;

default:
System.out.println(“That’s not 1, 2 or 3!”);
break;

}
}

Program output:
Enter 1, 2 or 3: 2 [Enter]
You entered 2.

The case Statement

public static void main(String[] args)
{

int number;

Scanner keyboard = new Scanner(System.in);

System.out.print(“Enter 1, 2 or 3: “);
number = keyboard.nextInt();

switch (number)
{

case 1:
System.out.println(“You entered 1.”);

case 2:
System.out.println(“You entered 2.”);

case 3:
System.out.println(“You entered 3.”);

default:
System.out.println(“That’s not 1, 2 or 3!”);

break;
}

}

Program output:
Enter 1, 2 or 3: 1 [Enter]
You entered 1.
You entered 2.
You entered 3.
That’s not 1, 2 or 3!

public static void main(String[] args)
{

String input;
char foodGrade;

Scanner keyboard = new Scanner(System.in);

System.out.println(“Our pet food is available in three grades:“);
System.out.print(“A, B and C. Which do you want pricing for? ”);

input = keyboard.nextLine();
foodGrade = input.charAt(0);

switch (foodGrade)
{

case ‘a’:
case ‘A’:

System.out.println(“30 cents per gram”);
break;

case ‘b’:
case ‘B’:

System.out.println(“20 cents per gram”);
break;

case ‘c’:
case ‘C’:

System.out.println(“10 cents per gram”);
break;

default:
System.out.println(“Invalid choice”);
break;

}
}

Asks the user to
select a grade of pet

food

Stores the input as a character in variable
foodGrade

No break statement

No break statement

No break statement

public static void main(String[] args)
{

String input;
char foodGrade;

Scanner keyboard = new Scanner(System.in);

System.out.println(“Our pet food is available in three grades:“);
System.out.print(“A, B and C. Which do you want pricing for? ”);

input = keyboard.nextLine();
foodGrade = input.charAt(0);

switch (foodGrade)
{

case ‘a’:
case ‘A’:

System.out.println(“30 cents per gram”);
break;

case ‘b’:
case ‘B’:

System.out.println(“20 cents per gram”);
break;

case ‘c’:
case ‘C’:

System.out.println(“10 cents per gram”);
break;

default:
System.out.println(“Invalid choice”);
break;

}
}

Program output:
Our pet food is available in three grades:
A, B and C. Which do you want pricing for? a [Enter]
30 cents per gram

public static void main(String[] args)
{

String input;
char foodGrade;

Scanner keyboard = new Scanner(System.in);

System.out.println(“Our pet food is available in three grades:“);
System.out.print(“A, B and C. Which do you want pricing for? ”);

input = keyboard.nextLine();
foodGrade = input.charAt(0);

switch (foodGrade)
{

case ‘a’:
case ‘A’:

System.out.println(“30 cents per gram”);
break;

case ‘b’:
case ‘B’:

System.out.println(“20 cents per gram”);
break;

case ‘c’:
case ‘C’:

System.out.println(“10 cents per gram”);
break;

default:
System.out.println(“Invalid choice”);
break;

}
}

Program output:
Our pet food is available in three grades:
A, B and C. Which do you want pricing for? B [Enter]
20 cents per gram

Java
Fundamentals

Output using printf

The printf Method

 You can use the System.out.printf method to
perform formatted console output.

 The general format of the method is:

System.out.printf(FormatString, ArgList);

The printf Method

int hours = 40;
System.out.printf(“I worked %d hours this week\n”, hours);

Program output:
I worked 40 hours this week

When this string is printed, the %d will not
be displayed. The value of the hours
argument will be printed in the place of %d.

The printf Method

System.out.printf(FormatString, ArgList);

FormatString is a
string that contains text

and/or special formatting
specifiers.

ArgList is optional. It is a list of
additional arguments that will be

formatted according to the format
specifiers listed in the format string.

The printf Method

 A simple example:

System.out.printf("Hello World\n");

The printf Method

 Another example:

int hours = 40;

System.out.printf("I worked %d hours.\n", hours);

The printf Method

int hours = 40;

System.out.printf("I worked %d hours.\n", hours);

The %d format
specifier indicates

that a decimal
integer will be

printed.

The contents of the
hours variable will be

printed in the location of
the %d format specifier.

The printf Method

 Another example:
int dogs = 2, cats = 4;

System.out.printf("We have %d dogs and %d cats.\n", dogs, cats);

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %f.\n", grossPay);

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %f.\n", grossPay);

The %f format
specifier indicates

that a floating-point
value will be

printed.

The contents of
the grossPay
variable will be
printed in the

location of the %f
format specifier.

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %.2f.\n", grossPay);

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %.2f.\n", grossPay);

The %.2f format
specifier indicates that a
floating-point value will
be printed, rounded to

two decimal places.

The printf Method

 Another example:
String name = "Ringo";

System.out.printf("Your name is %s.\n", name);

The %s format specifier
indicates that a string will be

printed.

Increment and Decrement

The Increment and Decrement Operators

 There are numerous times where a variable
must simply be incremented or decremented.
number = number + 1;

number = number – 1;

 Java provide shortened ways to increment and
decrement a variable’s value.

 Using the ++ or -- unary operators, this task
can be completed quickly.
number++; or ++number;

number--; or --number;

Differences Between Prefix and Postfix

 When an increment or decrement are the only
operations in a statement, there is no
difference between prefix and postfix notation.

 When used in an expression:
◦ prefix notation indicates that the variable will be

incremented or decremented prior to the rest of the
equation being evaluated.
◦ postfix notation indicates that the variable will be

incremented or decremented after the rest of the
equation has been evaluated.

Differences Between Prefix and Postfix

int number = 4;
System.out.println(number++);

int number = 4;
System.out.println(++number);

Postfix

Prefix

number is displayed on the screen first,
and then incremented.

number is incremented first, and then
displayed on the screen

4
Press any key to continue

5
Press any key to continue

Differences Between Prefix and
Postfix

int x = 1, y;
y = x++;

Postfix

Prefix

x is defined as an int and initialised with the value
1. y is declared an int.

The value of x is assigned to the variable y and then incremented

At the end of this statement: x = 2, y = 1

int x = 1, y;
y = ++x;

x is defined as an int and initialised with the value
1. y is declared an int.

The value of x is incremented and then assigned to variable y

At the end of this statement: x = 2, y = 2

While loops

The while Loop

 Java provides three different looping structures.
 The while loop has the form:

while(condition)
{
statements;

}

 While the condition is true, the statements will
execute repeatedly.

 The while loop is a pretest loop, which means that it
will test the value of the condition prior to executing
the loop.

 Care must be taken to set the condition to false
somewhere in the loop so the loop will end.

 Loops that do not end are called infinite loops.
 A while loop executes 0 or more times. If the

condition is false, the loop will not execute.

The while Loop

statement(s)
true

boolean
expression?

false

The while Loop Flowchart

public class WhileLoop
{

public static void main(String[] args)
{

int number = 1;

while (number <=5)
{

System.out.println(“Hello”);
number++;

}

System.out.println(“That’s all!”);
}

}

number declared and
initialised with the value of 1

Tests variable number to
determine whether it is less

than or equal to 5

If it is, then these statements
are executed.

When number <= 5 is tested and found
to be false, the loop will terminate and
the program will resume execution at

the statement that immediately follows
the loop.

The while Loop

number <=5 Print “Hello”
Add 1 to
number

Print “That’s all”

False

True

Program output
Hello
Hello
Hello
Hello
Hello
That’s all!

123456

The while Loop

Infinite Loops

 In order for a while loop to end, the condition must
become false. The following loop will not end:

int x = 20;
while(x > 0)
{
System.out.println("x is greater than 0");

}

 The variable x never gets decremented so it will always be
greater than 0.

 Adding the x-- above fixes the problem.

 This version of the loop decrements x during
each iteration:

int x = 20;

while(x > 0)

{

System.out.println("x is greater than 0");

x--;
}

Infinite Loops

Block Statements in Loops

 Curly braces are required to enclose block
statement while loops. (like block if statements)

while (condition)
{

statement;
statement;
statement;

}

The while Loop for Input Validation

 Input validation is the process of ensuring that
user input is valid.

System.out.print("Enter a number in the range of 1 through 100: ");
number = keyboard.nextInt();

// Validate the input.
while (number < 1 || number > 100)
{
System.out.println("That number is invalid.");
System.out.print("Enter a number in the range of 1 through 100: ");

number = keyboard.nextInt();
}

The do-while Loop

 The do-while loop is a post-test loop, which
means it will execute the loop prior to testing
the condition.

 The do-while loop (sometimes called a do
loop) takes the form:
do
{
statement(s);

}while (condition);

The do-while Loop Flowchart

statement(s)

true
boolean
expression?

false

public static void main(String[] args)
{

int score1, score2;
double average;
char repeat;
String input;

Scanner keyboard = new Scanner(System.in);

do
{

System.out.print(“Enter score #1: “);
score1 = keyboard.nextInt();
System.out.print(“Enter score #2:);
score2 = keyboard.nextInt();
keyboard.nextLine();

average = (score1 + score2) / 2.0;
System.out.println(“The average is : “ + average);

System.out.println(“Would you like to average another set of test scores?”);
System.out.print(“Enter ‘Y’ for yes or ‘N’ for no: “);
input = keyboard.nextLine();
repeat = keyboard.charAt(0);

} while (repeat == ‘Y’ || repeat == ‘y’);
}

Characters in Java are represented by numerical values using Unicode, which is
an international standard that assigns a unique number to every character.
Unicode covers almost all written languages, and in Java, it requires 2 bytes per
character, allowing for the representation of over 65,000 characters.

Characters are internally represented by numbers. Each character is
assigned a unique number.

Java uses Unicode, which is a set of numbers that are used as codes for
representing characters. Each Unicode number requires two bytes of
memory, so char variables occupy two bytes.

1 public class Characters
2 {
3 public static void main(String[] args)
4 {
5 char letter;
6
7 letter = 65;
8 System.out.println(letter);
9 letter = 66;
10 System.out.println(letter);
11 }
12 }

A

Printed on the computer screen when application runs:

B

3

Characters in Java are stored using Unicode values, making them ordinal. This means that characters can
be compared using relational operators, such as <, >, <=, >=, ==, and !=.

For example, in the ASCII range, the character 'A' is less than 'Z' because 'A' has a smaller Unicode value
than 'Z'. This makes comparing characters useful in sorting algorithms, checking ranges, and validating
input.

 Characters can be tested with relational operators.
 Characters are stored in memory using the Unicode character format.
 Unicode is stored as a sixteen (16) bit number.
 Characters are ordinal, meaning they have an order in the Unicode character set.
 Since characters are ordinal, they can be compared to each other.

char c = ′A′;
if(c < ′Z′)
System.out.println("A is less than Z");

In Java, percentages are represented as decimals. For instance, 50% is
represented as 0.5. When calculating percentages, be mindful of this
conversion to ensure accurate results.

For instance:
100% is represented as 1.0
50% is represented as 0.5
20% is represented as 0.2
5% is represented as 0.05

5.0
100
50%50 ==

The Math Class

In Java, the Math class provides basic
mathematical functions and constants, like
addition, square roots, trigonometry, and more.

It includes methods like Math.sqrt() for square
roots, Math.pow() for powers, and constants like
Math.PI for π.

The Math.pow method is used to raise a number to the power of another number. It takes two
double arguments. The first argument is the base, and the second is the exponent.

Example Code:
double result = Math.pow(3.0, 2.0); // 3^2 = 9
System.out.println("3 raised to the power of 2: " + result);

The Math.pow method raises a number to a power.

result = Math.pow(3.0, 2.0);

This method takes two double arguments. It raises the first argument to the power
of the second argument, and returns the result as a double.

0.9
32

=
=

result
result

The Math Class
The Math.pow Method

The Math.sqrt method returns the square root of a number. It takes a double value as
an argument and returns the square root of the number.

Example Code:
double result = Math.sqrt(4.0); // Square root of 4 is 2
System.out.println("Square root of 4: " + result);

The Math.sqrt method accepts a double value as its argument and
returns the square root of the value.

result = Math.sqrt(4.0);

0.2
4

=
=

result
result

The Math Class
The Math.sqrt Method

The Math Class
The Math.PI predefined constant

The Math.PI constant is a constant assigned with
a value of 3.14159265358979323846, which is
an approximation of the mathematical value pi.

double area, radius;

radius = 5.5;
area = Math.PI * radius * radius;

03317777.95
5.55.5

=
××=

area
area π

Combined Assignment Operators

Combined assignment operators in Java are shorthand
operators that perform an operation on a variable and then
assign the result back to that variable in a single step. They
make code shorter and often easier to read.

9

Combined Assignment Operators

On the right of the assignment operator, 1 is added to x. The
result is then assigned to x, replacing the previous value.
Effectively, this statement adds 1 to x.

x = x +1; Faster way: x += 1;

On the right of the assignment operator, 1 is subtracted from y.
The result is then assigned to y, replacing the previous value.
Effectively, this statement subtracts 1 from y.

y = y -1; Faster way: y -= 1;

9

Combined Assignment Operators

On the right of the assignment operator, 10 is multiplied by z.
The result is then assigned to z, replacing the previous value.
Effectively, this statement multiplies z with 10.

z = z*10; Faster way: z *= 10;

On the right of the assignment operator, a is divided by b. The
result is then assigned to a, replacing the previous value.
Effectively, this statement divides a by b.

a = a / b; Faster way: a /= b;

10

Combined Assignment Operators

On the right of the assignment operator, the remainder of x
divided by 4 is calculated. The result is then assigned to x,
replacing the previous value. Effectively, this statement assigns
the remainder of x/4 to x.

x = x % 4; Faster way: x %= 4;

Sentinel Values

A sentinel value is a special value used to terminate loops or signal
the end of data processing. It is often used when the number of
inputs or records is unknown, and a special value is chosen to signal
the end.

This technique is especially useful in file processing and user input
where the total data length isn't predetermined.

For instance, a sentinel value might be a negative number when processing
positive integers, or a specific string like 'END'. When the program encounters this
value, it knows to stop further data collection or processing.

Conversion between
Primitive Data Types:

Casting

Conversion between Primitive
Data Types

Before a value can be stored in a variable, the
value’s data type must be compatible with the
variable’s data type. Java performs some
conversions between data types automatically,
but does not automatically perform any
conversion that can result in the loss of data.

Conversion between Primitive
Data Types
int x;
double y = 2.8;
x = y;

This statement is attempting to store a double value
(2.8) in an int variable. This will give an error message.

A double can store fractional numbers and can hold
values much larger than an int can hold. If this were

permitted, a loss of data would be likely.

Conversion between Primitive
Data Types
int x;
short y = 2;
x = y;

This statement is attempting to store a short value (2) in
an int variable. This will work with no problems.

Conversion between Primitive
Data Types

double

float

long

int

short

byte

Primitive data type ranking

Highest rank

Lowest rank

Conversion between Primitive
Data Types

In assignment statements
where values of lower-ranked

data types are stored in
variables of higher-ranked data

types, Java automatically
converts the lower-ranked
value to the higher-ranked

type.

double x;
int y = 2;
x = y;

We call this a widening conversion

double

float

long

int

short

byte

Conversion between Primitive
Data Types

In assignment statements
where values of higher-ranked

data types are stored in
variables of lower-ranked data

types, Java does not
automatically perform the

conversion because of possible
data loss.

int x;
double y = 2.0;
x = y;

We call this a narrowing conversion

Error!

double

float

long

int

short

byte

Conversion between Primitive
Data Types
 (Cast operators)

The cast operator lets you manually convert a value,
even if it means that a narrowing conversion will take place.

int x;
double y = 2.5;
x = y;

Error!

int x;
double y = 2.5;
x = (int) y;

Cast
operator No problem!

Conversion between Primitive
Data Types
 (Cast operators)

Java compiles the code with the cast operator with no problems.
In this case variable y has a value of 2.5 (floating-point value)

which must be converted to an integer.

int x;
double y = 2.5;
x = (int) y;

Cast
operator No

problem!

The value that is returned and stored in variable x would be truncated,
which means the fractional part of the number is lost to

accommodate the integer data type.

Thus: x = 2 The value of variable y is not
changed at all: y = 2.5

Mixed Integer Operations

One of the nuances of the Java language is the way it handles
arithmetic operations on int, byte and short.

When values of the byte or short data types are used in arithmetic
expressions, they are temporarily converted to int values.

short x = 10, y = 20, z;
z = x + y;

Error!

How can this error be rectified?

Mixed Integer Operations
short x = 10, y = 20, z;
z = x + y;

Error!

The error results from the fact that z is a short. The
expression x + y results in an int value.

This can be corrected if z is declared as an int, or if a cast
operator is used.

short x = 10, y = 20;
int z;
z = x + y;

No problem!

short x = 10, y = 20, z;
z = (short) (x + y); No problem!

22

Creating Named Constants with final

The final key word can be used in a variable declaration to
make the variable a named constant. Named constants are

initialized with a value, and that value cannot change during
the execution of the program.

amount = balance * 0.072;

The 1st problem that arises is that it is not clear to anyone but
the original programmer as to what the 0.072 is.

The 2nd problem occurs if this number is used in other
calculations throughout the program and must be changed

periodically.

We can change the code to use the final key word
to create a constant value.

amount = balance * 0.072;

final double INTEREST_RATE = 0.072;

amount = balance * INTEREST_RATE;

Old code

New
code

Now anyone who reads the code will understand it.
When we want to change the interest rate, we

change it only once at the declaration.

Creating Named Constants with final

The String Class
String Methods

Because the String type is a class instead of a
primitive data type, it provides numerous methods

for working with strings.

The String Class
charAt() Method

This method returns the character at the specified
position.

char letter;
String name = “Arnold”;
letter = name.charAt(2);

0 1 2 3 4 5

A r n o l d

After this code executes, the variable letter will hold
the character ‘n’.

The String Class
length() Method

This method returns the number of characters in a
string.

int stringSize;
String name = “Arnold”;
stringSize =

name.length();
0 1 2 3 4 5

A r n o l d

After this code executes, the variable stringSize will
hold the value 6.

The String Class
toLowerCase() Method

This method returns a new string that is the lowercase
equivalent of the string contained in the calling object.

String bigName = “ARNOLD”;
String littleName = bigName.toLowerCase();

After this code executes, the variable littleName will hold the
string “arnold”.

The String Class
toUpperCase() Method

This method returns a new string that is the
uppercase equivalent of the string contained in the

calling object.

String littleName = “arnold”;
String bigName = littleName.toUpperCase();

After this code executes, the variable bigName will
hold the string “ARNOLD”.

The char Data Type
Unicode

Characters are internally represented by numbers.
Each character is assigned a unique number.

Java uses Unicode, which is a set of numbers that are
used as codes for representing characters. Each
Unicode number requires two bytes of memory, so
char variables occupy two bytes.

The char Data Type
1 public class Characters
2 {
3 public static void main(String[] args)
4 {
5 char letter;
6
7 letter = 65;
8 System.out.println(letter);
9 letter = 66;
10 System.out.println(letter);
11 }
12 }

A

Printed on the computer screen when application runs:

B

31

Comparing Characters
 Characters can be tested with relational operators.
 Characters are stored in memory using the Unicode character

format.
 Unicode is stored as a sixteen (16) bit number.
 Characters are ordinal, meaning they have an order in the Unicode

character set.
 Since characters are ordinal, they can be compared to each other.

char c = ′A′;
if(c < ′Z′)
 System.out.println("A is less than Z");

Importance of Coding Styles

Coding styles play a crucial role in software
development:

1. Improves readability, making it easier for others to understand
the code.

2. Promotes consistency across a codebase, especially in team
projects.

3. Makes debugging and maintaining code simpler and more
efficient.

Different Coding Styles

Different coding styles serve different purposes and preferences:

1. Some styles prioritize compactness (e.g., K&R), while others focus on
clarity (e.g., Allman).

2. The key is consistency within the project or organization.

3. Adapting to a style is important:

Adapting to a coding style within a project is essential for readability and
maintainability. Consistent styling helps anyone working on the code
understand its structure more easily, making it straightforward to read,
debug, and modify. When code follows a predictable style, it reduces the
cognitive load, allowing developers to focus on the logic rather than
deciphering varied formatting.

Why Indentation Matters

Indentation is crucial for enhancing the structure and readability of code:

1. It visually separates code blocks, making the control flow clearer.

2. Proper indentation reduces errors by clearly showing the hierarchy of
logic.

3. Inconsistent indentation can lead to confusion, even in small projects.

	�All Academic & Professional Skills classes are cancelled for this week�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	What is
	What is
	A brief history of
	A brief history of
	A brief history of
	A brief history of
	A brief history of
	A brief history of
	Why Java?
	Slide Number 21
	Ready to	get	started ?
	Java Programs
	Tools to
	Tools to
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Java Development Kit (JDK) Editions
	When you write a Java program, you write java code
– a plain text file.
	When you write a Java program, you write java code
– a plain text file.
	When you write a Java program, you write java code
– a plain text file.
	Java
	Compiled
	Java
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	A Simple Java Program
	Java Programs – Shell Code
	Java
	Java Programs
	Java
	Java Primitive Data Types (Complete)
	Primitive Data Types
	Primitive Data Types - Declaration
	The Integer Data Types
	Primitive Data Types - Declaration
	The Floating-Point Data Types
	Primitive Data Types - Declaration
	String Data Type - Declaration
	Java
	Strings in Java - Declaration
	9 different data types:
	Java
	Arithmetic Operators
	Arithmetic Operators
	Arithmetic Operators
Addition (+)
	Arithmetic Operators
Subtraction (-)
	Arithmetic Operators
Multiplication (*)
	Arithmetic Operators
Division (/)
	Integer division
	Arithmetic Operators
Modulus (%)
	Operator Precedence
	3 + 6 / 2 = ?
	Explicit Parenthesis example
	Java
	Displaying Multiple Items with the + Operator
	Displaying Multiple Items with the + Operator
	Java
	Comments
	Comments
Three ways to comment in Java
	Comments
	Comments
	Comments
	Comments
Documentation Comments
	Indentation
	Identifiers
	Identifiers
	Variable and Class names
	Java
	Reading Keyboard Input
	Reading Keyboard Input
Scanner class : import statement
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
Scanner class methods
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Reading Keyboard Input
	Pseudocode
	Pseudocode
	Pseudocode Convention
	Levels of Program Development
	Pseudocode Example
	Pseudocode Example
	When planning for a problem solution, algorithms are used to outline the solution steps usingEnglish like statements, called pseudocode.
	Java
	The if Statement
	Flowcharts
	Flowcharts
	Relational Operators
	Boolean Expressions
	Programming Style and if Statements
	Programming Style and if Statements
	Block if Statements
	Comparing Characters
	Flags
	Comparing Characters
	if Statements
	if-else Statements
	if-else Statement Flowcharts
	if else Statements
	Nested if Statements
	Nested if Statement Flowcharts
	Nested if Statements
	Alignment and Nested if Statements
	if-else-if Statements
	if-else Matching
	if-else-if Statements
	Logical Operators
	Logical Operators
	The && Operator
	The || Operator
	The || Operator
	The ! Operator
	Order of Precedence
	Checking numeric ranges
	Checking numeric ranges
	Comparing String Objects
	Comparing String Objects
	Comparing String Objects
	Comparing String Objects
	Ignoring Case in String Comparisons
	The String Class
String Methods
	The String Class
	The String Class
	The String Class
	The String Class
	Java
	The switch Statement
	The switch Statement
	Slide Number 161
	The switch Statement
	The switch Statement
	The case Statement
	The case Statement
	The case Statement
	Slide Number 167
	Slide Number 168
	Program output:
	Java
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	The printf Method
	Increment and Decrement
	The Increment and Decrement Operators
	Differences Between Prefix and Postfix
	Differences Between Prefix and Postfix
	Differences Between Prefix and Postfix
	While loops
	The while Loop
	The while Loop
	The while Loop Flowchart
	The while Loop
	The while Loop
	Infinite Loops
	Infinite Loops
	Block Statements in Loops
	The while Loop for Input Validation
	The do-while Loop
	The do-while Loop Flowchart
	Slide Number 200
	The for Loop
	The for Loop Flowchart
	The Sections of The for Loop
	The for Loop Initialization
	The for Loop
	The Update Expression
	Modifying The Control Variable
	Multiple Initializations and Updates
	Slide Number 209
	Nested Loops
	The break Statement
	Deciding Which Loops to Use
	The Random Class
	Some Methods of the Random
Class
	The Random Class
	Slide Number 216
	Slide Number 217
	Dialog Boxes
	Dialog Boxes
The JOptionPane Class
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Slide Number 233
	Message Types - Output Examples
	Converting String Input to Numbers
	Converting String Input to Numbers
	Converting String Input to Numbers
	Converting String Input to Numbers
The Byte.parseByte method
	Converting String Input to Numbers
The Float.parseFloat method
	Converting String Input to Numbers
The Long.parseLong method
	Converting String Input to Numbers
The Short.parseShort method
	Slide Number 242
	import JOptionPane to be used in program
	Slide Number 244
	1	import javax.swing.JOptionPane;
	Slide Number 246
	1	import javax.swing.JOptionPane;
	1	import javax.swing.JOptionPane;
	1	import javax.swing.JOptionPane;
2
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	Dialog Boxes
	File Input and Output
	The PrintWriter Class
	Writing Text To a File
	The PrintWriter Class
	The PrintWriter Class
	Exceptions
	Exceptions
	Writing Text To a File
	Appending Text to a File
	Slide Number 263
	Specifying a File Location
	Specifying a File Location
	Reading Data From a File
	Reading Data From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Detecting The End of a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading Primitive values from a file
	Reading Data From a File
	Reading Data From a File
	Checking for a file’s existence
	Exceptions
	Slide Number 286
	Slide Number 287
	Slide Number 288
	Slide Number 289
	Methods
	Why Write Methods?
	void Methods and
Value-Returning Methods
	Defining a void Method
	Two Parts of Method Declaration
	Parts of a Method Header
	Parts of a Method Header
	Calling a Method
	Calling a Method
	Hierarchical Method Calls
	Documenting Methods
	Documenting Methods
	Passing Arguments to a Method
	Passing Arguments to a Method
	Passing 5 to the displayValue
Method
	Argument and Parameter Data Type Compatibility
	Passing Multiple Arguments
	Arguments are Passed by Value
	Slide Number 308
	Passing Object References to a Method
	Passing a Reference as an Argument
Both variables reference the same object
	Strings are Immutable Objects
	Slide Number 312
	@param Tag in Documentation Comments
	Slide Number 314
	More About Local Variables
	Slide Number 316
	Returning a Value from a Method
	Defining a Value-Returning Method
	Calling a Value-Returning Method
	@return Tag in Documentation Comments
	Program output
	Returning a booleanValue
	Slide Number 323
	Returning a Reference to a String
Object
	Slide Number 325
	Problem Solving with Methods
	Slide Number 327
	Slide Number 328
	Slide Number 329
	Slide Number 330
	Slide Number 331
	Slide Number 332
	Slide Number 333
	Calling Methods that Throw Exceptions
	An	introduction to
Classes
	Topics
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Writing a Class, Step by Step
	Writing a Class, Step by Step
	UML Diagram
	UML Diagram for
Rectangle class
	Writing the Code for the Class Fields
	Access Specifiers
	Header for the setLength Method
	Writing and Demonstrating the setLength
Method
	Creating a Rectangle object
	Calling the setLength Method
	Writing the getLength Method
	Writing and Demonstrating the getArea
Method
	Accessor and Mutator Methods
	Accessors and Mutators
	Data Hiding
	Data Hiding
	Stale Data
	Stale Data
	UML Data Type and Parameter Notation
	UML Data Type and Parameter Notation
	UML Data Type and Parameter Notation
	UML Data Type and Parameter Notation
	Converting the UML Diagram to Code
	Converting the UML Diagram to Code
	Class Layout Conventions
	Instance Fields and Methods
	Instance Fields and Methods
	States of Three Different Rectangle Objects
	Constructors
	Constructors
	Constructor for Rectangle Class
	Constructors in UML
	Uninitialized Local Reference Variables
	The Default Constructor
	The Default Constructor
	Writing Your Own No-Arg Constructor
	Overloading Methods and Constructors
	Overloaded Method add
	Method Signature and Binding
	Rectangle Class Constructor Overload
	Rectangle Class Constructor Overload
	Scope of Instance Fields
	Shadowing
	this keyword
	this keyword
	this keyword
	this keyword
	this keyword
	The String Class Constructor
	The String Class Constructor
	Object Oriented Design
	Object Oriented Design
Finding Classes and Their Responsibilities
	The BankAccount Example
	The World’s objects and classes
	Arrays
	Introduction to Arrays
	Creating Arrays
	Creating Arrays
	Creating Arrays
	Accessing the Elements of an Array
	Inputting and Outputting Array Elements
	Bounds Checking
	Off-by-One Errors
	Array Initialization
	Alternate Array Declaration
	Processing Array Contents
	Processing Array Contents
	Array Length
	The Enhanced for Loop
	The Enhanced for Loop
	Array Size
	Array Size
	Reassigning Array References
	Reassigning Array References
	Reassigning Array References
	Copying Arrays
	Copying Arrays
	Slide Number 422
	Passing Arrays as Arguments
	Comparing Arrays
	Comparing Arrays: Example
	Useful Array Operations
	Partially Filled Arrays
	Two-Dimensional Arrays
	Two-Dimensional Arrays
	Accessing Two-Dimensional Array Elements
	Accessing Two-Dimensional Array Elements
	Accessing Two-Dimensional Array Elements
	Accessing Two-Dimensional Array Elements
	Accessing Two-Dimensional Array Elements
	Initializing a Two-Dimensional Array
	Initializing a Two-Dimensional Array
	The length Field
	The length Field
	Summing The Elements of a Two-Dimensional Array
	Summing The Rows
of a Two-Dimensional Array
	Summing The Columns of a Two-Dimensional Array
	Passing and Returning Two- Dimensional Array References
	Ragged Arrays
	More Than Two Dimensions
	Classes and Objects
	Static Class Members
	Static Fields
	Slide Number 448
	Slide Number 449
	Slide Number 450
	Slide Number 451
	Static Methods
	Slide Number 453
	Slide Number 454
	The toString method
	The toString method
	The toString method

